Человек будущего будет на 100% здоров? Перспективы медицинских открытий

Содержание

20 удивительных технологий будущего, которые изменят мир в ближайшие 30 лет

Человек будущего будет на 100% здоров? Перспективы медицинских открытий
Технологии

Мир совершенствуется каждый день, изобретая и открывая что-то новое, и без этих достижений мы бы не продвинулись так далеко.

Ученые, исследователи, разработчики и дизайнеры со всего мира пытаются воплотить то, что упростит нашу жизнь и сделает ее интереснее.

Вот, несколько технологий будущего, которые поднимают нашу жизнь на совершенно другой уровень.

Новые технологии будущего

1. Биохолодильники


Российский дизайнер предложил концепцию холодильника, названного “Bio Robot Refrigerator”, который охлаждает еду с помощью биополимерного геля. В нем нет полок, отделений и дверей – вы просто вставляете еду в гель.

Идея была предложена Юрием Дмитриевым для конкурса Electrolux Design Lab. Холодильник использует всего 8 процентов энергии дома для контрольной панели и не нуждается в энергии для фактического охлаждения.

Биополимерный гель холодильника использует свет, генерируемый при холодной температуре, чтобы сохранять продукты. Сам гель не имеет запаха и не липкий, а холодильник можно установить на стене или на потолке.

2. Сверхбыстрый 5G Интернет от беспилотников с солнечными панелями


Компания Google работает над дронами на солнечных панелях, раздающими сверхскоростной Интернет в проекте, названном Project Skybender. Теоретически беспилотники будут предоставлять Интернет услуги в 40 раз быстрее, чем в сетях 4G, позволяя передавать гигабайт данных в секунду.

Проект предусматривает использование миллиметровых волн для предоставления сервиса, так как существующий спектр для передачи мобильной связи слишком заполнен. 

Однако эти волны имеют более короткий диапазон, чем мобильный сигнал 4G. Компания Google работает над этой проблемой, и если удастся решить все технические проблемы, вскоре может появится Интернет небывалой скорости.

3. 5D диски для вечного хранения терабайтов данных


Исследователи создали 5D диск, который записывает данные в 5 измерениях, сохраняющиеся миллиарды лет. Он может хранить 360 терабайт данных и выдержать температуру до 1000 градусов.

Файлы на диске сделаны из трех слоев наноточек. Пять измерений диска относятся к размеру и ориентации точек, а также их положению в пределах трех измерений. Когда свет проходит через диск, точки меняют поляризацию света, которая считывается микроскопом и поляризатором.

Команда из Саутгемптона, которая разрабатывает диск, смогла записать на диск Всеобщую декларацию прав человека, Оптику Ньютона, Магна Карту и Библию. Через несколько лет такой диск уже не будет экспериментом, а станет нормой хранения данных.

4. Инъекции частиц кислорода


Ученые из Бостонской детской больницы разработали микрочастицы, наполненные кислородом, которые можно вводить в кровоток, позволяя вам жить, даже если вы не сможете дышать.

Микрочастицы состоят из одного слоя капсул липидов, которые окружают небольшой пузырь кислорода. Капсулы размером 2-4 микрометра подвешены в жидкости, которая контролирует их размер, так как пузыри большего размера могут быть опасны. 

При введении, капсулы, сталкиваясь с красными кровяными клетками, передают кислород. Благодаря этому методу удалось ввести в кровь 70 процентов кислорода.

5. Подводные транспортные туннели


В Норвегии планируют построить первые в мире подводные плавающие мосты на глубине 30 метров под водой с помощью больших труб, достаточно широких для двух полос.

Учитывая сложности перемещения по местности, в Норвегии решили работать над созданием подводных мостов. Ожидается, что проект, на который уже затрачено 25 миллиардов долларов, будет закончен в 2035 году. 

Предстоит еще учесть и другие факторы, например, влияние ветра, волн и сильных течений на мост.

6. Биолюминесцентные деревья


Группа разработчиков решила создать биолюминесцентные деревья с помощью фермента, встречающегося у некоторых медуз и светлячков.

Такие деревья смогут освещать улицы и помогут прохожим лучше видеть ночью. Была уже разработана небольшая версия проекта в форме растения, светящегося в темноте. Следующим шагом станут деревья, освещающие улицы.

7. Сворачивающиеся в рулон телевизоры


Компания LG разработала прототип телевизора, который можно свернуть как рулон бумаги.

Телевизор использует технологию светодиодов на основе полимерной органики, чтобы уменьшить толщину экрана.

Кроме LG, другие крупные производители электроники, такие как Samsung, Sony и Mitsubishi работают над тем, чтобы сделать экраны более гибкими и портативными.

Развитие технологий в будущем

8. Бионическая линза для сверхчеловеческого зрения


Канадский врач собирается проводить клинические тестирования “бионических линз”, которые в 3 раза улучшают стопроцентное зрение с помощью 8-минутной безболезненной операции.

Новая линза будет доступна уже к 2017 году, улучшая естественный хрусталик глаза. Во время операции шприц внедряет линзу с физиологическим раствором в глаз, и через 10 секунд сложенная линза распрямляется и располагается над естественным хрусталиком, полностью корректируя зрение.

9. Спрей-одежда


Испанский дизайнер Манел Торрес (Manel Torres) изобрел первую в мире спрей-одежду. Вы можете нанести спрей на любую часть тела, а затем снять его, смыть и снова носить.

Спрей сделан из специальных волокон, смешанных с полимерами, которые придают ткани эластичность и долговечность. Эта технология позволит дизайнерам создавать уникальные предметы одежды с оригинальным дизайном.

10. Портреты, полученные из ДНК


Студентка Хизер Дюи-Хагборг создает 3D портреты из ДНК, найденных на сигаретных окурках и жевательных резинках на улице.

Последовательности ДНК она вводит в компьютерную программу, которая создает облик человека с образца. Обычно в ходе этого процесса выдают 25-летнюю версию человека. Затем модель распечатывают в 3D портреты в натуральную величину.

11. Покупки в виртуальной реальности


Один из таких магазинов был открыт на железнодорожной станции в Южной Корее, где вы можете сделать заказ, сфотографировав штрих-код, и ваши покупки доставят домой.

Сеть магазинов Homeplus установила шесть дверей-экранов с изображениями полок в натуральную величину c товарами, которые вы приобрели бы в супермаркете. Под каждым товаром есть штрих-код, который можно отсканировать и отправить с помощью приложения. 

Источник: https://www.infoniac.ru/news/20-udivitel-nyh-tehnologi-budushego-kotorye-izmenyat-mir-v-blizhaishie-30-let.html

10 впечатляющих примеров медицины будущего

Человек будущего будет на 100% здоров? Перспективы медицинских открытий

Те из нас, кто значительную часть жизни прожил до рубежа веков, привыкли считать наш текущий период времени эдаким отдаленным будущим.

Раз уж мы выросли на фильма вроде «Бегущего по лезвию» (в котором действие происходит в 2019 году), нас как-то не очень впечатляет, каким оказывается будущее — во всяком случае с эстетической точки зрения. Да, летающих автомобилей, которые нам постоянно обещали, может не быть никогда.

Но в медицине, например, происходят настолько впечатляющие прорывы, что мы уже сейчас стоим на пороге практического бессмертия. И чем дальше в будущее, тем удивительнее перспективы этой сферы.

Замена суставов из биоматериалов

Технологии замены суставов и костей прошли долгий путь за последние десятилетия, части на пластиковой и керамической основе взяли верх над металлическими частями, а новейшее поколение искусственных костей и суставов заходит еще дальше: их будут делать из биоматериалов, чтобы они практически слились с телом.

Это стало возможным, конечно же, благодаря 3D-печати (к этой теме мы будем возвращаться неоднократно).

Хирурги главного госпиталя Саутгемптона в Великобритании изобрели технику, с помощью которой имплант бедра пожилого пациента удерживается на месте с помощью «клея», изготовленного из собственных стволовых клеток пациента.

Кроме того, профессор Университета Торонто Боб Пиллиар вывел процесс на новый уровень, создав импланты нового поколения, которые на самом деле имитируют кость человека.

Используя процесс, который связывает компонент кости на замену (с применением ультрафиолетового света) в невероятно сложные структуры с чрезвычайной точностью, Пиллиар и его команда создает крошечную сеть каналов и траншеек, по которым перевозятся питательные вещества в самом импланте.

Выращенные костные клетки пациента затем распределяются по этой сети, замыкая кость с имплантом. Со временем компонент искусственной кости растворяется, а выросшие естественным образом клетки и ткани сохраняют форму импланта.

Крошечный кардиостимулятор

С момента имплантации первого кардиостимулятора в 1958 году, эта технология, конечно, значительно улучшилась. Впрочем, после гигантских скачков в развитии в 1970-х, в середине 80-х все как-то застопорилось.

Компания Medtronic, которая создала первый кардиостимулятор, работающий на батарейке, выходит на рынок с устройством, которое может произвести такую же революцию в области кардиостимуляторов, как и ее первое устройство.

Оно размером с витаминку и не требует хирургического вмешательства.

Эта новая модель вводится через катетер в паху (!), крепится к сердцу маленькими зубцами и поставляет необходимые регулярные электрические импульсы.

В то время как обычные кардиостимуляторы, как правило, требуют сложного хирургического вмешательства, создания «кармашка» для устройства рядом с сердцем, крошечная версия существенно упрощает эту процедуру и снижает частоту осложнений на 50%: 96% пациентов не выявляли никаких признаков осложнений.

И хоть Medtronic вполне может быть первым на этом рынке (имея полученное одобрение FDA), другие крупные производители кардиостимуляторов разрабатывают конкурентные устройства и не собираются оставаться за пределами рынка, годовой объем которого составляет 3,6 миллиарда долларов. Medtronic начала разработку крошечных спасителей в 2009 году.

Глазной имплант от Google

Вездесущий провайдер поисковой системы и мировой гегемон Google, похоже, планирует интегрировать технологии в каждый аспект нашей жизни. Впрочем, стоит признать, что вместе с кучей хлама Google выдает на-гора и стоящие идеи. Одно из последних предложений Google может как изменить мир, так и превратить его в кошмар.

Проект, который известен как Google Contact Lens, представляет собой контактную линзу: имплантируясь в глаз, она заменяет естественный хрусталик глаза (который разрушается в этом процессе) и приспосабливается, исправляя плохое зрение.

Линза крепится к глазу с помощью того же материала, который используется при производстве мягких контактных линз, и имеет множество практических медицинских применений — вроде считывания кровяного давления пациентов с глаукомой, уровней глюкозы у пациентов с диабетом или беспроводного обновления с учетом ухудшений зрения пациента.

В теории, искусственный глаз Google может полностью восстановить зрение. Конечно, это еще не камера, которая имплантируется прямо вам в глаза, но поговаривают, что к этому все идет. Кроме того, непонятно, когда линза появится на рынке. Но патент был получен, а клинические испытания подтвердили возможность процедуры.

Искусственная кожа

За последние десятилетия достижения в области создания искусственной кожи явили нам существенный прогресс, но два недавних прорыва из совершенно разных областей могут открыть новые направления для исследований.

Ученый Роберт Лангер из Массачусетского технологического института разработал «вторую кожу», которую назвал XPL («сшитый полимерный слой»).

Невероятно тонкий материал имитирует упругую молодую кожу — этот эффект проявляется мгновенно при создании, но теряет силу примерно через день.

А вот профессор химии Чао Вонг из Калифорнийского университета в Риверсайде работает над еще более футуристическим полимерным материалом: который может самовосстанавливаться от повреждений при комнатной температуре и пронизан крошечными металлическими частицами, которые могут проводить электричество, для лучших измерений. Профессор уверяет, что не пытается создать кожу для супергеров, но признает, что является большим фанатом Росомахи и пытается привнести научную фантастику в настоящий мир.

Что примечательно, некоторые самовосстанавливающиеся материалы уже появились на рынке — например, самовосстанавливающееся покрытие телефона LG Flex, которое Вонг приводит в качестве примера возможного применения таких технологий в будущем. Короче говоря, этот чувак действительно пытается создать супергероев.

Импланты мозга, восстанавливающие двигательные способности

Двадцатичетырехлетний Ян Буркхарт пережил ужасную аварию в возрасте девятнадцати лет, которая парализовала его от груди до пальцев ног.

В течение последних двух лет он работал с докторами, которые настраивали и экспериментировали с устройством, имплантированным в его мозг — микрочипом, который считывает электрические импульсы мозга и переводит их в движение.

Хоть устройство и далеко от совершенства — его можно использовать только в лаборатории, когда имплант подключен к компьютеру с помощью рукава на руке — оно позволило пациенту свинтить крышку с бутылки и даже поиграть в видеоигру.

Ян признает, что может и не получить выгоду от этих технологий. Он делает это больше чтобы доказать возможность концепции и показать, что его конечности, разъединенные с мозгом, можно заново к нему подключить с помощью посторонних средств.

Впрочем, вполне вероятно, что его помощь хирургии головного мозга и эксперименты, которые проводят по три раза в неделю, окажут огромную поддержку в продвижении этой технологии для будущих поколений. Хотя подобные процедуры использовались для частичного восстановления движений обезьян, это первый пример успешного преодоления нервного разъединения, которое вызывает паралич у человека.

Биоабсорбируемые трансплантаты

Стенты — сетчатые полимерные трубки, которые вставляются хирургическим путем в артерии, препятствуя их блокированию — сущее зло, которое приводит к осложнениям у пациента и демонстрируют умеренную эффективность. Потенциал осложнений, особенно у молодых пациентов, делает результаты недавнего исследования с участием биоабсорбируемых сосудистых трансплантатов весьма перспективными.

Процедура называется эндогенное восстановление тканей.

Давайте простыми словами: в случае с молодыми пациентами, которые родились без некоторых необходимых соединений в сердце, врачи смогли создать эти соединения, используя продвинутый материал, который выступает в качестве «лесов», позволяя телу копировать его структуру с помощью органических материалов, а сам имплант впоследствии растворяется. Исследование было ограниченным, с участием всего пятерых молодых пациентов. Но все пятеро выздоровели без каких-либо осложнений.

Хотя эта концепция не нова, новый материал (состоящий из «супрамолекулярных биоабсорбируемых полимеров, изготовленных с использованием проприетарной технологии электропрядения») представляет собой важный шаг вперед. Стенты предыдущего поколения состояли из других полимеров и даже металлических сплавов и выдавали смешанные результаты, что привело к медленному принятию этого метода лечения во всем мире.

Хрящ из биостекла

Еще одна 3D-печатная полимерная конструкция может произвести революцию в методах лечения весьма изнурительных заболеваний. Группа ученых из Имперского колледжа Лондона и Университета Милано-Бикокка создали материал, который назвали «биостеклом»: комбинацию кремний-полимера, имеющую прочные и гибкие свойства хряща.

Биостеклянные импланты напоминают стенты, о которых мы говорили выше, но делаются из совершенно другого материала для совершенно другого применения. Одним из предложенных использований таких имплантов является выстраивание лесов для поощрения естественного выращивания хряща. Также они обладают саморегенерацией и могут восстанавливаться, если связи будут разорваны.

Несмотря на то, что первым испытанием метода будет замена межпозвоночного диска, другая — постоянная — версия импланта находится в стадии разработки для лечения травм колена и других травм в районах, где хрящ уже не отрастить. 3D-печать делает импланты более дешевыми и доступными в производстве и еще более функциональными, чем другие импланты этого типа, которые доступны нам в настоящее время и, как правило, выращиваются в лаборатории.

Самовосстанавливающиеся полимерные мышцы

Чтобы не отставать от коллег, стэнфордский химик Ченг-Хи Ли в поте лица работает над материалом, который может быть строительным блоком для фактической искусственной мышцы, которая может превзойти в качествах наши хилые мускулы. Его соединение — подозрительно органическое соединение кремния, азота, кислорода и углерода — способно растягиваться до 40-кратной своей длины, а после возвращаться в нормальное положение.

Также оно может восстанавливаться от проколов за 72 часа и заново закрепляться после разрывов, вызванных железной «солью» в компоненте. Правда, для этого части мышцы нужно поместить рядом. Куски пока не ползут друг к другу. Пока.

На текущий момент единственным слабым местом этого прототипа является его ограниченной электропроводность: при воздействии электрического поля вещество увеличивается всего на 2%, в то время как настоящие мышцы — на 40%. Это должно быть преодолено в кратчайшие сроки — и тогда Ли, ученые с биостеклянными хрящами и доктор Росомаха смогут собраться вместе и обсудить, что делать дальше.

Призрак сердца

Этот метод, который изобрел Дорис Тейлор, директор регенеративной медицины в Техасском институте сердца, не сильно отличается от упомянутых выше 3D-печатных биополимеров и прочего. Метод, который доктор Тейлор уже продемонстрировал на животных — и готов продемонстрировать на людях — совершенно фантастический.

Если коротко, сердце животного — свиньи, например — замачивается в химической ванне, которая разрушает и высасывает все клетки, кроме белка. Остается пустой «призрак сердца», который затем можно наполнить собственными стволовыми клетками пациента.

Как только необходимый биологический материал оказывается на месте, сердце подключается к устройству, которое заменяет искусственную систему кровообращения и легкие («биореактор»), пока не станет функционировать как орган и его можно будет пересадить пациенту. Этот метод Тейлор успешно продемонстрировал на крысах и свиньях.

Этот же метод имел успех и с менее сложными органами вроде мочевого пузыря и трахеи. Впрочем, процесс далек от совершенства, но когда его достигнет, очереди пациентов, ожидающих сердца для пересадки, могут прекратиться полностью.

Инъекция мозговой сети

Наконец у нас есть передовая технология, способная быстро, просто и совершенно опутать мозг сетью с помощью одной инъекции. Исследователи из Гарвардского университета разработали электропроводящую полимерную сеть, которая буквально впрыскивается в мозг, где проникает в его закоулки и сливается с веществом мозга.

Пока что сеть, состоящая из 16 электрических элементов, была пересажена в мозг двух мышей на пять недель без иммунного отторжения.

Исследователи предсказывают, что крупномасштабное устройство такого плана, состоящее из сотен подобных элементов, может активно контролировать мозг до каждого отдельного нейрона в ближайшем будущем и пригодится при лечении неврологических расстройств вроде болезни Паркинсона и инсульта.

В конце концов, это исследование может привести ученых к более глубокому пониманию высших когнитивных функций, эмоций и других функций мозга, которые в настоящее время остаются непонятными.

Источник: https://Hi-News.ru/medicina/10-vpechatlyayushhix-primerov-mediciny-budushhego.html

Какие революционные открытия меняют медицину – Мир прогнозов

Человек будущего будет на 100% здоров? Перспективы медицинских открытий

Алексей Ремез, основатель сервиса дистанционной онкологической диагностики UNIM

Гренландский кит может прожить больше двухсот лет, кораллы — больше четырех тысяч. Рэймонд Курцвейл (технический директор Google и футуролог)утверждает, что человечество через десять-пятнадцать лет научится фактически продлевать жизнь представителей своего вида практически до бесконечности — то есть, можно сказать, станет бессмертным.

Люди в поисках бессмертия

Некоторые ученые полагают, что старение человека — это своего рода заболевание, и оно излечимое. Если взглянуть на уровень медицины сто двадцать лет назад и сравнить с современными разработками, то подобные заявления больше не кажутся чем-то из области фантастики.

Уже сейчас человек довольно успешно создаёт при помощи 3D-принтеров органы, создает умные протезы. В этом году должна быть проведена первая операция по пересадке головы.

Носимые устройства, собирающие информацию о состоянии здоровья пациента, получают всё большее распространение.

Некоторые изданных инноваций находятся на начальной стадии разработки, а некоторыеуже сейчас являются реальность и приносят своим основателям милиардные доходы. К чему всё это приведет в будущем, и каким образом через каких-то несколько лет будет выглядеть рынок медицины.

mHealth

Рынок мобильной медицины (mHealth) — является одной из самых массовых ниш в отрасли. mHealth — это «умные часы», мобильные устройства, импланты и персональные медицинские устройства, позволяющие собирать много информации о состоянии здоровья пациента. Мировой объём этого рынка в 2014 году, согласно экспертным оценкам,составил $10,9 млрд. К 2020 году ожидается рост до $58,8 млрд.

Среди пользователей вполне объяснима популярность различных медицинских девайсов. С возникновением смартфонов мониторинг здоровья стал удобной опцией, которой можно пользоваться в любое время.

При помощи этих данных пациенты могут самостоятельно контролировать свое здоровье, получать автоматические напоминания о том, что требуется принять то или иное лекарство. Помимо этого, эти данные помогут врачам провести диагностику и подобрать методы лечения.

В ближайшее время могут вознкнуть приложения с возможностью удаленного мониторинга и консультаций.

Как утверждают разработчики «умных» девайсов, использование приборов не сможет заменить человеку комплекс медицинских исследований, которые традиционно проводятся в поликлинике, но они помогут заметить первые признаки хронических заболеваний вовремя, изменить свой образ жизни и избежать в будущем сложных операций.

Телемедицина

Медицина будущего станет активно развиваться в направлении телемедицины.

Благодаря новым технологиям у пациента будет доступ к электронной медицинский карте, он сможет дистанционно общаться с врачом и отправлять для диагностики анализы в любую лабораторию мира.

Это поможет разобраться с проблемой низкой доступности квалифицированной помощи в отдельных регионах или отдалённых населенных пунктах.

По данным BBC Research, к 2019 году глобальный рынок телемедицины достигнет почти $44 млрд, показывая среднегодовой рост в 17,7%. В перспективе развитие телемедицины даст государствам возможность сэкономить большие средства в сфере здравоохранения, сообщает отчет британской исследовательской компании GBI Research.

Телемедицина — это не только лишь дистанционные консультации врача, но ещё и дистанционное наблюдение за показателями пациентов. В настоящее время очень активно развивается рынок носимых гаджетов, способных регистрировать разные показатели (артериальное давление, ЭКГ, температуру тела и т.д.) и отправлять эти данные в медицинский центр.

Ещё одним направлением является дистанционное управление медицинским оборудованием. К примеру, робот-хирург DaVinci, при помощи которого можно удаленно проводить операции.

Хирург находится за пультом, видит участок в 3D-формате с большим увеличением и управляет с помощью джойстика четырёхруким роботом, который способен находиться от негона любом расстоянии.

Также в настоящее время уже пользуются комплексами удалённой ультразвуковой диагностики.

Российская разработка в сфере телемедицины — программное обеспечение DigitalPathology, ключевая задача которого — повысить эффективность морфологического этапа онкологической диагностики, снизить вероятность ошибок и сократить сроки диагностики.

Сервис позволяет патологам дистанционно работать с оцифрованными гистологическими стёклами, проводить онлайн-консилиумы и отправлять случаи на консультации узкопрофильным специалистам из любой точки планеты.

Работа на платформе происходит с той же степенью свободы, что и при использовании медицинского multi-head-микроскопа.

За последнее время в России существенно возрос интерес к новым медицинским технологиям. «Ростелеком» заключил соглашение с МГУ им. М.В. Ломоносова на разработку и создание автоматизированной системы дистанционного медицинского консультирования и мониторинга физиологического состояния человека. «Яндекс» и Минздрав начинают работать над законопроектом о телемедицине.

Борьба с раком

В России каждый год выявляют около 530 000 новых случаев рака, и 280 000 больных умирают. До настоящего времени против рака не было эффективной вакцины— учёные не могли дать ответ на вопрос, почему иммунная система человека не может распознать злокачественные клетки и не уничтожает их. Недавно исследователи этот феномен разгадали.

Как казалось, клетки новообразования «маскируются» под здоровые при помощи синтеза на своей поверхности двух белков — PD-1 и PD-L1. Это открытие дало начало новому направлению в онкологии — иммунотерапии.

Суть иммунотерапии состоит в лечении опухолей при помощи антител, которые помогают иммунитету человека бороться с раковыми клетками.

По мнению ученых, иммунотерапия – действенный и многообещающий метод лечения рака.

За границей уже зарегистрированы два препарата на основе антител против белка PD-1. Один производит компания MSD, второй — Bristol-MyersSqibb.

Они уничтожают белок PD-1 и помогают организму самому побороть болезнь, не задевая здоровые клетки. Эти препараты не зарегистрированы в России.

В то же время российский препарат от рака уже успешно прошёл испытания на животных, его уже готовят к клиническим исследованиям.

Ещё одним перспективным направлением в онкологии явяется создание генных препаратов против рака. В октябре 2015 года Американское управление по санитарному надзору за качеством продуктов и медикаментов (FDA) одобрило к применению препарат для лечения меланомы (одного из типов рака кожи).

Препарат Imlygic производства BioVex (дочерняя компания Amgen) создан на основе генетически модифицированного живого онколитического вируса простого герпеса. В нём нет двух генов, отвечающих за размножение в здоровых клетках.

Препарат предназначен для лечения тех злокачественных новообразований, которые не могут быть полностью удалены хирургическим путем (тем не менее, препарат нельзя назначать пациентам с подавленной иммунной системой и беременным).

Геном

Новые пути к успехам в медицине откроет детальное знание человеческого генома. В последние годы стоимость расшифровки генома снижается быстрее, чем прогнозирует закон Мура. Так, до изобретения систем секвенирования нового поколения стоимость процедуры составляла около $100 млн, однако сейчас компании уже создают технологии, которые снижают стоимость расшифровки до $1000.

Согласно прогнозам, к 2020 году процедура будет стоить копейки. И информация, получаемая в результате этого анализа, совершит революцию в медицине. Чем дешевле будет технология, тем больше людей можно привлечь к секвенированию, а данные этих расшифровок в свою очередь помогут понять значение тех или иных генетических особенностей.

Ещё одна важная и активно обсуждаемая тема — модификация человеческого генома. В 2015 году в мире появился первый пациент, чья жизнь была спасена благодаря редактированию генов. Используя генную терапию, британским медикам удалось обратить вспять развитие онкологического заболевания у ребенка.

Недавно в Великобритании разрешили проводить генетическую модификацию человеческих эмбрионов с помощью технологии CRISPRCas9. До сих пор подобные исследования на Западе вообще были запрещены.

Отмечу, правда, что разрешение касается только исследовательских целей и выдано пока одному научному коллективу. Но старт таких исследований может стать важным шагом к началу применения технологии редактирования генома на людях. Потенциально это позволит лечить сотни и даже тысячи наследственных заболеваний. Но пока что эта технология вызывает жаркие споры.

Сегодня по ДНК-анализам можно выявить предрасположенность к тем или иным заболеваниям. Используя эти данные, можно принимать профилактические меры. По крови матери генетики могут оценить возможность хромосомных аномалий у плода.

Возможно, в будущем детям уже в роддоме будут делать полную расшифрокугенома и выдавать инструкцию для жизни на пару сотен лет.

Персонализированная медицина

Дальнейшее изучение генома человека приведёт к развитию персонализированной медицины. Известно, что при одинаковом диагнозе одно и то же лечение одним пациентам помогает, другим — нет.

И именно симбиозу генетики и фармакологии под силу исправить это положение.
Персонифицированная медицина изучает не только иммунный ответ на лечение, но и природу заболевания, его вариации, которые определяются при помощи биомаркеров (белков, генов).

Они выявляют мишени для воздействия препарата и необходимую дозу лекарства.

Сегодня уже разработаны инсулиновые помпы со встроенным компьютером, которые позволяют точно рассчитать и подать пациенту необходимое количество инсулина. А ученые из WakeForester создали прототип компьютерного алгоритма для 3D-печати индивидуальных лекарств.

3D-печать органов

В будущем человека можно будет напечатать на биопринтере за 2 часа 47 минут, говорят учёные. Пока что это воспринимается как научная шутка, а не реальность. Но ведь всего пару десятилетий назад и сама технология биопечати казалась чем-то из области ненаучной фантастики.

Ученые из института регенеративной медицины WakeForester в Северной Каролине уже смогли с помощью стволовых клеток напечатать копии человеческих костей, хрящей и мышц. Трёхмерные органы пока ещё не пересаживали людям, но технология совершенствуется с каждым днём.

Например, до недавнего времени учёные не могли печатать достаточно прочные органы, а также воспроизводить кровеносные сосуды, без которых новые клетки не могут получать питательные вещества и кислород. Но новый биопринтер, разработанный WakeForester, решил эти проблемы.

В целом, биопринтеры работают примерно по тому же принципу, что и обычные 3D-принтеры — только вместо пластика они использует разные типы живых клеток. В будущем 3D-печать органов станет реальностью, и это позволит решить проблему донорства.

В 2014 году в Нидерландах состоялась пересадка человеку фрагмента черепа, созданного на 3D-принтере. В 2015 году в Испании впервые в мире человеку пересадили напечатанные ребра.

Недавно компания-резидент «Сколково» напечатала щитовидную железу и успешно вживила ее мыши, однако, по словам разработчиков, пока это «лабораторный уровень». По их прогнозам, для печати человеческих органов и проведения тестов безопасности понадобится не менее 15 лет. Впрочем, темпы научной гонки в этой области растут.

Сегодня на 3D-принтере уже научились печатать таблетки. Кроме того, ученые уже умеют печатать почечную ткань, которую можно использовать для клинических исследований лекарств.

Медицина и бионика

Прикладная бионика — наука, объединяющая технику и биологию. Применение бионики в медицине даст возможность спасти жизнь многим пациентам или даже просто улучшить её качество. Все время ведутся работы по созданию искусственных органов, способных функционировать в симбиозе с организмом человека.

Несколько лет назад был создан первый бионический глаз для слепых, который уже успешно имплантировался человеку. Протез позволяет ориентироваться в пространстве, видеть очертания объектов и контуры лиц. Пока подобные импланты очень дороги. К тому же, подобные разработки не могут вернуть зрение полностью, однако даже нынешние достижения дают надежду на прозрение миллионам слепых.

Существет ряд успешных проектов по созданию миоэлектрических протезов конечностей. Такие протезы способны считывать нервные импульсы с уцелевшей части руки или ноги и выполнять функции хвата, удержания предмета.

В качестве примера назову активные протезы i-LIMB шотландской компании TouchBionics, выпускаемые с 2007 года. Они позволяют совершать сложные движения и поднимать даже мелкие предметы.

Кроме того, сенсоры дают возможность управлять силой, с которой протез сжимает предметы, и даже скоростью движения пальцев.

В России разработкой миоэлектрических протезов занимается компания «Моторика», которая в апреле 2016 года уже получила декларацию соответствия на активный тяговый протез кисти.

Возможно, в будущем эти технологии позволят менять износившиеся живые органы человека на механические прототипы.

Источник: https://www.mirprognozov.ru/prognosis/health/kakie-revolyuczionnyie-otkryitiya-menyayut-mediczinu/

Продление жизни на 100 лет – технологии ближайших 10 лет. ItWorked

Человек будущего будет на 100% здоров? Перспективы медицинских открытий

Александр Коляда – известный популяризатор науки, яркий представитель молодого поколения украинских ученых, генетик со стажем, научный сотрудник Института геронтологии и учредитель генетичекой лаборатории.

Мы целый час терзали Сашу вопросами о перспективах бессмертия для живущих поколений и путях максимального продления жизни. Признаться, некоторые ответы ItWorked искренне поразили.

Перспектива бессмертия

Каждый родитель искренне хочет лучшего будущего для своих детей. Но когда заходит речь о продлении жизни, у большинства включается здоровый эгоизм. Мы все хотим жить «долго и счастливо». И оказывается, теперешнее положение дел в науке дает нам надежду, что ныне живущие поколения имеют все шансы реализовать заветную мечту.

«Сейчас уже можно говорить, что бессмертие – реальная перспектива, возможно, даже для нашего поколения. Главное, осознать, что самое прямое понимание термина «бессмертие» – это то, как ты сейчас выглядишь и живешь вечно. То есть нет никакого лекарства, воскрешения, переноса сознания на флешку. Такого подхода нет. Бессмертие – это вечная жизнь в том состоянии, что есть сейчас»

Отсюда вытекает правомерный вопрос – как сохранить себя в пригодном состоянии максимально долго. Дабы не фиксировать себя на столетия дряхлой развалюхой, а к моменту открытия действительно почти вечного продления жизни быть в достойном состоянии? Однако, прежде всего стоит разобраться, какими же путями ученые мужи планируют продлять нам жизнь.

Гмо как эликсир бессмертия

Есть понятие – кардинальное продление жизни, когда мы можем увеличить ее на 100, на 200 лет, ну а там, где 200, там и бесконечность, бессмертие как таковое.

Путей для этого несколько. И чтобы их придумать, ученые должны были понять, как это работает. Ведь чтобы что-то починить, надо понять принцип действия.  

«Раньше мы думали, что старение – это неизбежное пассивное накопление токсических продуктов и ошибок. Ведь все вокруг стареет и изнашивается. Но, оказывается, кроме этого есть запрограммированная программа старения. Это программа прошитая, также как и половое созревание.

Поняв это, удалось найти виды с «пренебрежимым» старением. Их порядка 20. К примеру, мышь живет 2 года, а некоторые ее родственники куда дольше. Голый землекоп живет 30 лет, летучая мышь – 20 лет и при этом они не стареют, размножаются до последнего дня. Умирают же от холода, инфекций, паразитов или хищников.

Или киты, в которых находят гарпуны 100-летней давности… То есть виды, которые живут намного дольше, чем родственные им. Причина явно не в том, что они перестали курить. А в том, что у них произошли мутации выключившие в них программу старения.

И если мы знаем их геном, можем сравнить с соседними видами и найти мутации в генах, которые позволили им жить непростительно долго по меркам млекопитающих»

То есть с научной точки зрения «вечная молодость» – это не карма или прямое следствие здорового образа жизни, а конкретная генетическая программа. Именно поэтому ученые стали пытаться повторить данные мутации в лабораторных экспериментах.

И уже сейчас, по словам Александра, путем отключения «гена старения» удалось примитивным организмам продлить жизнь в 10 раз. А для млекопитающих рекорд пока это продление полноценной жизни на 50%.

Отсюда вывод, что создание ГМО (генно-модифицированного организма) – один из способов продления жизни на данном этапе развития науки и техники.

Вопрос времени

Главный камень преткновения на пути к стремительному развитию науки – технологии. Точнее их несовершенство.

«Вот вы хотите новую скатерть. Купили ткань, машинку, посмотрели ролик и сделали. А как вставить ген? Его же не пощупаешь, это совсем другой мир. У нас пока нет для этого быстрых и удобных технологий.

Если бы были какие-то микроруки, микроглаза, мы пошли бы намного быстрее, но это очень дорого и сложно. Природа не заложила туда возможность нашего вмешательства. Предпосылки есть, но инструкции нет, приходится исследовать, познавать.

И хоть мы уже знаем, как это работает, у нас пока мало инструментов для реализации»

Да и в целом, по признанию Александра, геронтология – неблагодарная наука. Ведь для получения результата эксперимента приходится ждать годами, десятилетиями. Старение все еще неизбежный и весьма длительный у многих видов процесс.

Но, что самое парадоксальное, ответ на вопрос бессмертия, с развитием технологий мы можем получить совсем не такой, каким представляем его ныне.  

«Если говорить о продлении жизни на 100 лет, то речь идет о технологиях ближайших десяти лет. Если о совсем кардинальном бессмертии, то может получиться, что это невозможно вообще. Ответ может прийти с неожиданной стороны.

Вот люди всегда мечтали летать, и, в принципе, сейчас каждый может купить билет на самолет и полететь. Только ведь это не тот полет, о котором мечтали, они хотели банальные крылья.

Так и тут – не исключено, что пойдет все другим путем, может будет частичная пересадка органов, глубокая заморозка-разморозка и т.д.»

Не стареть, но не омолаживаться

Если с «генами старения» мы разобрались – их нашли и изучают – то вот кардинальное омоложение природой не предусмотрено.

Поэтому голубая мечта о волшебной пилюле вечной молодости – лишь плод воображения маркетологов и голливудских киносценаристов.

«Да, когда мы берем кровь, обогащенную факторами роста молодых людей, подкалываем старым, то действительно есть локальный бьюти-эффект. Но это очень приятное исключение из правила.

Ведь когда мы сшиваем двух мышей, старую и молодую, чтобы кровоток объединился, то молодая всегда стареет, а старая никогда не омолаживается. Как и пересаженные молодые органы все равно состариваются.

Потому что есть факторы старения, а факторов молодости нет»

То есть у нынешнего поколения есть отличный стимул – попытаться сохранить себя. И не путем увлечения anti-age технологиями, за которые придется платить здоровьем, а исключением факторов старения.

Пути продления жизни

Научным языком это называется некардинальное продление жизни. И при разумном подходе есть гарантия сохранения качества жизни минимум на 20%.

Главные общие для всех принципы отсрочки старости таковы:

1.    Не пить алкоголь2.    Не курить3.    Не есть сладкое4.    Вести активный образ жизни5.    Контролировать свое состояние здоровья

О некоторых вещах мы говорим с точки зрения умеренного употребления, а некоторые лучше исключить вообще. То есть ни один продукт никого еще не убил, как и ни одна монодиета никого не сделала бессмертным. Все должно быть сбалансировано!

«Старит повышенный гликемический индекс – когда ты ешь то, что повышает уровень сахара в крови, грубо говоря, простые углеводы. Сахар связывается с белком, и эта связка является пусковым механизмом старения.

Каждая клетка умеет их считать, а как только она досчитывает до определенной концентрации – идет по пути старения.

То есть клетка «считает», что мы съели сахара столько, как будто прожили 120 лет, а 120 это уже ее предел жизни»

По словам Александра, главная печаль состоит в том, что, усугубляя ситуацию сахаром, курением и подобными вредными факторами, мы даем сигнал нашим клеткам, что пора сворачиваться, что мы наели и накурили на 50 лет вперед. Такие сигналы идут отовсюду. И, конечно же, их нужно избегать. То есть секрет молодости прост, но он никому не нравится.

Долголетие, как наследственность

Любители искать оправдания своей лени и нежеланию переосмыслить образ жизни любят говорить, что «я ничего не могу делать, это же генетическая предрасположенность». Но тут у нашего эксперта тоже нашелся весьма убедительный ответ.

«Маньяк, убийца и насильник Чикатило оставил после себя много детей. И как-то энтузиасты разыскали двух его потомков, 30-летних сыновей. Один стал успешным бизнесменом, другой – асоциальным элементом с «отсидками» и т.п.

Обоим задали один и тот же вопрос: «Как вам с такой наследственностью удалось стать тем, кем вы есть?». И ответ был одинаковым: «А как я с таким отцом мог стать кем-то другим?».

То есть один это воспринял как стимул победить плохую генетику, второй же, наоборот, смирился с «генетической склонностью»

Но, когда речь заходит о наследственном долгожительстве, то тут все-таки наука признает наличие генов долгожительства. К примеру, Александр является участником проекта, который исследует долгожителей Украины. Ребята пытаются разобраться, какие гены позволяют им жить больше остальных.

«Отличный пример мадам Кальман, прожившая 122 года, 95 из которых она курила. Казалось, что она будто была создана природой, чтобы всех тыкнуть лицом и доказать, что да, ЗОЖ это все хорошо, но есть что-то важнее.

Только истина куда глубже и на самом деле долголетие – это комбинация работы генов с факторами среды. Если человек живет рядом с шахтой, имея ген риска развития рака легких, то долго не проживет.

Но если с тем же геном родиться в горной местности, то жизнь будет дольше»

Кстати, один из самых простых способов понять свою «наследственную» продолжительность жизни без детальных тестов – это взять возраст родителей, сложить и результат поделить надвое – это будет самое вероятное число отведенных лет.

«Путь некардинального продления жизни и состоит в том, чтобы понять свою генетику и выбрать максимально комфортные для тебя условия. Есть люди, которых курение не убивает, есть те, кого кофе лечит… Факторов очень много. Все люди разные. И слово «гармония» все больше входит в голову ученых»

Сегодня для определения генетической предрасположенности к тем или иным рискам, заболеваниям, уже существуют специальные тесты. Их результаты дают хоть и небольшую, но фору. Потому что все-таки знать предрасположенность и всячески ее избегать – очень разные вещи.

24 / 05 / 2016

Источник: http://itworked.com.ua/article/view/prodlenie-jizni-na-100-let---tehnologii-blijayishih-10-let/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.